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Strain solitary waves in an elastic rod embedded in another elastic external medium with sliding
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The propagation of nonlinear elastic longitudinal strain solitary wdives strain solitonsin a cylindrical
rod being in sliding contact with an external elastic medium is considered. The waves have phase velocity in
an interval, determined by the elastic properties of the external medium. Furthermore, it is shown that relative
to the free rod case the external medium may alter the type of strain soliton. The theory developed can formally
be used to estimate the surface-tension-like effects resulting from imperfections of the rod’s lateral surface.
Finally, from the results obtained an approach is suggested for the possible experimental determination of the
Murnaghan third-order isotropic elastic modiif61063-651%98)04309-9

PACS numbep): 42.25.Bs, 42.65.Tg, 62.30d, 81.70—q

INTRODUCTION interface between the rod and the external medium. The full
(strong contact model is used when there is continuity of
The study of straifong, quasistationary, localized waves both normal and shear stresses, and displacements. Alterna-
of permanent formsolitary waves is of theoretical and ex- tively, in a weak contact, friction may appear at the interface,
perimental interest because these waves may propagate amence a discontinuity in the shear stresses. Slippage provides
transfer energy over long distances along elastic waveguidegnother form of contact at the interface, in which only the
Being rather stable and powerful, the waves may cause theontinuity of the normal stresses and displacements is as-
appearance of plasticity zones or microcracks and eventualljumed. Surface stresses may also arise due to the imperfect
the breakdown of a waveguide, see €.4,2]. Therefore, the manufacturing of the lateral surface of the waveguide and are
study of the behavior of such waves is of importance for arformally like the "surface tension” on the free surface of a
assessment of the durability of elastic materials and strudiquid [14,15.
tures, methods of nondestructive testing, determination of the The analytical solution of the contact problem is rather
physical properties of both standafd.g., brassand new difficult even in the framework of the linear elasticity theory,
elastic materials, and, particularly, polymeric solids. Othersee [16] and references therein. However, considerable
possible applications of strain nonlinear waves come fronprogress has been achieved to account for short nonlinear
their permanent shape property and from the dependence 6firface acoustic waves propagating along the interface be-
their amplitude, phase velocity, etc. upon the material proptween elastic medig7].
erties and elasticity of the waveguide. Recently, in the studies of strain waves in a rod, interact-
In contrast to the nonlinear static theory the developmening with an elastic external medium, attention was mostly
of the nonlinear elasticlynamictheory is far from being focused on the propagation séirfacestrain waves along the
complete. It is only rather recently that basic research begalateral rod surfaceperpendicular to its axis (see, e.g.,
to appear[3—6]. The lack of understanding of nonlinear [17,18)). Here, however, we shall considéulk density
strain-wave propagation comes also from a lack of experistrain waves, propagatinglong the rod axis. For a recent
ments. However, there are several papers devoted to both tieview of the results concerning a rod with free lateral sur-
theoretical and the experimental study efivelopestrain  face seq19], where the first useful approximation to tackle
solitary wavesgenerally, surface wavgsgoverned, e.g., by the problem is to reduce the three-dimensid3al) problem
the nonlinear Schidinger equatiorn(see, e.g.[7]). Only in  to the 2D one by neglecting the rod torsion. Axial symmetry
the last decade have bulk or density strain solitary wavesf the displacements and strain fields inside the rod is also
been studied and generated in r¢8L] and in plate§10]. assumed. Further simplifications can be made using explic-
Recent experiments were motivated by the theory developeily some features of the physical straimside the rod[20].
in [11]. In particular, worth noting is the generation of com- Thus, the so-called plane cross- sections hypothesis has been
pression density solitons in polystyrene rods. Polystyrene alproposed for the longitudinal displacement along the
sorbs well linear acoustic waves and is used in many devicerod axis, u(x,r,t)=U(x,t), while the shear displacements
[12]. Moreover, as it possesses high yield point as well asv(x,r,t) are assumed to obey Love's relationship,
high wear and radiation resistance, it has been used as partwf= —vrU, [21]. Herex andr are coordinates along the rod
layered targets in nuclear fusion experimefsse[13]). axis and radius, respectively;denotes time, and is the
Stresses on the lateral surface of an elastic waveguid®oisson ratio. Although rather useful in the study of free
e.g., an elastic rod, may appear due to its interaction with theurface rods, these assumptions fail to properly account for
surrounding external medium, as in some technological decontact problems, because they rule out normal stresses at
vices. Various types of contact models can be used at thihe rod lateral surface, hence there is discontinuity of normal
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stresses at the interface of the rod and the external mediurBtrains are assumed weak enough to allow neglecting any
In this paper we provide an appropriate description ofsignificant strain-induced thermodynamic changes. THen

long nonlinear strain waves propagating in elastic cylin-
drical rod interacting with an external and differesitistic
medium. However, we limit ourselves to the case sfiding

can be identified as a measure of potential strain energy den-
sity. We choose Murnaghan’s approximation for deformation
energy due to its applicability to a wide class of nonlinear

contact . The formulation of the problem is given in Sec. I.(hypepelastic material$3,4]:
The relationships for the normal stresses acting on the lateral
surface of the rod are obtained in Sec. Il, by studying sepa-
rately the problem inside the rod and in the surrounding elas-
tic medium. Section Ill is devoted to the derivation of the
relationships between strains and displacements inside thgne first two terms in Eq(3) account for linear elasticity,
rod that satisfy the imposed boundary conditions at its laterahence the second order elastic moduli, or the Lameffi-
surface. Then an evolution equation is derived in Sec. IV fOI'CientS &, w), characterize linear elastic properties of the
the propagation of longitudinal strain waves parallel to thejsotropic material. Other terms in E() describe material or
axis of the rod. The influence of the elastic properties of thgyhysical nonlinearity[3,4,6]. Accordingly, the third order
external medium on the solitary wave propagation inside thejastic moduli, or the Murnaghan moduli,(m, n) (Ref.

rod is analytically studied in Sec. V. The nonlinear temporal[3]) account for nonlinear elastic properties of the isotropic

evolution is studied numerically in Sec. VI for the rod partly material. Then we set to zero the variation of the action
embedded in the external medium. In Sec. VII the possibilityfunctional,

of a formal extension of the theory to account for surface
t
55=5 f “dt
to

tensionlike effects is discussed. A procedure is suggested for
the possible determination of the Murnaghan moduli from

whereA is the work done by external forces. The integration
in brackets in Eq(4) is carried out at the initial timé=t,.

the knowledge of the characteristics of the solitary wave
propagating along the rod. Sec. VIII deals with some conclu-

Initially, the rod is supposed to be in its natural, equilibrium
state.

sions.
Let us consider an isotropic, axially infinitely extended, ~1he displacement vector for thimearly elastic external

elastic rod surrounded by another albeit different elastic memedium may be written a¥,=(u;,wy,0). Its density is
dium, in which it may slide without friction. We shall con- noted byp,, and its elastic properties are characterized by
sider the propagation of longitudinal strain waves of smalithe Lamecoefficients {4, x,). Any disturbances due to the
but finite amplitude in the rod. Axisymmetry leads to usingWave propagation inside the rod are transmitted to the exter-
cy|indrica| Langrangian Coordinatex'(f,@), wherex is the nal medium through displacements and stresses normal to
axis of the rod,pe[0,2r], O<r<R. When torsions are the rod surface only when contact witippageis consid-
neglected, the displacement vectok?s(u w,0). The strain ered. Disturbances are assumed to decay to zero in the ex-
field in the nonlinearly elastic medium in the reference con- ternal medium far from the rod. The normal strains as well as
figuration is defined by Cauchy-Greénite deformation ten- the displacements inside the rod are smaller than those along
sorC the rod axis. Thus we assume that displacements and strains
' are infinitesimal in the external medium, hence as already

A+ 2u I+2m
5 12—2ul,+ Tli—

2mlql,+nl;.

()

] R
277f dxf rcdr+A|=0, 4
— 0

|I. FORMULATION OF THE PROBLEM

C=[VV+(VV)T+VV. (¥V)T]/2 said it is a linear elastic one. Then for the external medium
we have
[written in terms of a vector gradieftV and its transpose Wy
(VV)T], which is the generalization of linear strain tensor. It~ pyUsg— (N g+2u1)Ug (N g+ pq)| W+ TX)
describes the so called geometrical nonlinearity, as discussed
by Engelbrech{6]. Once the reference configuration is de- Ug, Wi o
fined we use Hamilton’s principle to obtain the evolution of —)\1( Uppe 7 T Wit —) =0, )
nonlinear waves. Indeed, for an adiabatic deformation the
Langrangian density per unit volum& can be obtained us-
ing the difference between the kinetic energy denkitgnd W g+ 2uy)| Wy + —= Wir Wi — W
the volume densitylI of the internal energy, both per unit P VI 1
volume. We have
—(Nptp)Uuy=0. (6)
pol [du\? [ow)?

L=K-I=74|— +( &t) } LI(ly) (1)  The following boundary condition.c.9 are imposed:
where py is the rod material density dt=ty, while I,k w—0, atr —0, (@)
=1,2,3 are the invariants of tens@r

w=w;, atr=R, (8)
I,(C)=trC, 1,(C)=[(trC)2—trC?]/2, 15(C)=deC.
2 Py=oy, atr=R, ©)
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Py=0, 0,=0, atr=R, (10) rod, allowing us to separate variables in the Lagrangian
and to derive one nonlinear equation for long longitudinal
u;—0, w;—0 atr—oo, (11)  waves using Hamilton’s variational princip(d).
where P,., P, denote the components of the Piola- || exTERNAL STRESSES ON THE ROD LATERAL
Kirchhoff stress tensoP [4], SURFACE
_ w AN+2p+m In this section the linear probles,6) will be solved with
Prr_()\+2M)Wr+)\T+)\ux+ 2 Ur the boundary condition&), (10) and (11). As we focus at-
tention ontravelling waves along the axis of the rod we
3A+6u+2l+4m W A+2I w2 assume that all variables depend only upon the phase vari-
2 +()‘+2|)Wf_+ 2 r2 able #=x—ct, wherec is the phase velocity of the wave.
Assuming that the unknown functions ,w; are
w A+20
+()\+2I)uxwr+(2I—2m+n)uxT+ 5 uy )
u1=d>0+\Ifr+T, wi=d, -V, (17
AN+2p+m
2 Wit (e m)uwy, (12) then® andW¥ satisfy the equations
w 1 2
Prxz,u(ur+wx)+()\+2,u.+m)u,wr+(2)\+2m—n)u,7 CI)H+?<IJ,+ ? D,,=0, (18
[
2m—n w
+ (N +2u+m)ul, + —=—w,— + (u+m)w,w, 1 1 c2
2 r Wt —W,— =W+ | 1- = | ¥,,=0, (19
r r2 cz)
+(p+myu,w,. (13 T

wherec, andc, are the velocities of the bulk longitudinal
and shear Ilnear waves in the external medium, respectlvely
They depend on the denS|ty and the Lanoefficients cI

=(\1+2u1)/p1, andc=puy/p;.

The quantitiesr,, andao,, are the corresponding components
of the linear stress tensor in the surrounding, external me
dium:

Wy To solve Eqgs.(18), (19) we introduce the Fourier trans-
=N+ 2p0)Wa Ny AUy (19 forms of ® and¥:
Trx= Ma(Ugr T Wiy). (15) F1'>=f Dexp —k)de, \Tr=J Pexp(—ka)do

The conditiong8)—(10) define thesliding contact, while the
longitudinal displacements andu, are left free at the inter-  that reduces Eq¢18),(19) to the Bessel equations
facer=R.
The Piola-Kirchhoff tensor coincides with the linear stress ~ 1~ ~
tensor for infinitesimally small strains. This tensor is chosen O+ Fq)r_ k2ad =0, (20
among other finite strain tensors because it is defined in the
reference configuratiof¥]. Note that the coefficients iR,
and P,, depend upon both the second-order Lacoeffi- v +E{i, _ i{f,_kzlgq,zo (21)
cients\ andu and the Murnaghan moduli,m,n. Hence the 2 '
tensorP takes into account both the geometrical and material
nonlinearities. with @=1—-c?/c?, andB=1—c?c?. The ratios between,
The linear equation5) and (6) are solved together with ¢, andc, define the signs ofr and 3, hence three possible
the boundary conditionsg), (10), and (11), assuming that sets of solutions to Eq$20),(21) appear, vanishing at infin-
the displacementv at the interface is a given function &f ity due to b.c.[Eq. (11)]. Using the boundary conditions
andt, hencew(x,t,R)=W(x,t). Then the linear shear stress (8),(10), we obtain the following relationships for the Fourier
o, at the interface =R is obtained as a function & and  images of normal stresses at the lateral surfae®:
its derivatives, thus providing the dependence only on the (i) when 0<c<c,,
rod characteristics in the right-hand side of the pEgy. (9)].

The same is valid for the elementary work done by external _ le/ 2(B—1) Kk(1+B)%Ky(akR)
forces atr =R: o= +
- R @Kl( R
SA=27 f o WX (16) 4k\BKo(VBKR) | 22
K1(VBKR)

Satisfaction of the b.c. on the rod lateral surface yields the
relationships between displacements and strains inside the (ii) whenc,<c<c,,
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v _ 2 N+2u+m
5 _mW[2B-1) KLt BKo(JakR) (N 2700, + (N — kW AUy + =2
1-p| R VoK (JakR)
3N+6u+2l+4m N+21
~akJBI(V=BKR) | 3 te “2 W2+ (A + 2 Wi+ = W2
I(V-BKkR) |’
+ (N +2)uw, + (21 =2m+n)u,w+ (e + myu,wy
(iii) whenc>c N+21 AN+2u+m
! 5~ koW, +82+w§=0(s3),
= _mW[2p=1) | k(1452 akR) (26)
" 1-8l R J—ady (V- akR
\ adi(V- akR) U, + & (uWy+ (N + 2+ mM)U,W, + (2X +2m—n)u,w+ (A
_ 4kVBI(V-BKR)| | 24 om—
IL(J=BKkR) |’ +2u+m)uu,)+e?| + > WW, + (i + M)W, W,
where J; andK; (i=0,1) denote the corresponding Bessel +(u+ m)uXWX)IO(ss). (27
functions.

We shall see in the next section that in the long wave IimitA _ _
. t the rod lateral surfac®v=w, W,,=w,,. Moreover, for

the normal stress,, has one and the same functional form at0<c<c
the lateral surface of the rod in all three caé28—(24). The T
main difference in the stresand strain fields in the external 2(y—In2)
medium is how they vanish at infinity. This depends on the ki=—2u1, kzz&,
monotonic decay oK; and the oscillatory decay & when Cf
R—oc. Note that the dependence of the strain wave behavior
on the velocities of bulk linear waves,, c,, is known, in ~ Wwhile for c,<c<c,
particular, for acoustic transverse Love waves propagating in

an elastic layer superimposed on an elastic half-sp&.dg K _2,u1(4cf—c2)
l_ 2 b

(28)

Ill. DERIVATION OF STRAIN-DISPLACEMENT )
RELATIONSHIPS INSIDE THE ROD K _;U«lcr
,=
To solve the nonlinear problem inside the elastic rod, we c?
have to simplify the relationships between longitudinal and
shear displacements and w. These relationships are ob- and forc>c;,
tained, using conditions on the free lateral surfaceR,

c? c2\?
l—g—f'(z—?) (7—In2)), (29

T T

. ) 2(~2__ A2 2.2 4 2
namely, the simultaneous absence of the tangential stresses , _ 2#1lC7(C7—¢j)+3cicz—4c;] Y ad s
and the continuity of the normal ones. We searchéaistic 1 Cf(cf_CZ) ron2 4ci
strain waves with sufficiently small magnitu@e<1, and a (30)

long wavelength relative to the rod radil®, R/L<1. L
scales the wavelength along the rod. An interesting case apvith y=0.577 215 7 Euler’s constant.

pears when there is balance betwéerak nonlinearity and The unknown functions,w will be found in power series
(weak dispersion as for a rod with free lateral surfaceof &:
[11,19. Then
U=Ug+teUy+e2ur+---, W=Wo+eW;+e?Wy+t---.
o (3D
e=B= ([) <1 (29 Substituting Eq(31) in Egs.(26), (27), and equating to zero

all terms of the same order af, we find that the plane

_ _ cross-section hypothesis and Love’s relation are valid in the
is the smallness parameter of the problem. The linear part qgading order only:

longitudinal strain along the rod ax@&,, is u,. Then choos-

ing L as a scale along, one getsBL as a scale for the Up=U(x,t), wy=rCU,, (32
displacementi. Similarly, the linear part of transverse strain,

Cr, isw,. We use the scalBR for the displacemenw, by  with

choosingR as a length scale along the rod radius. Then with

|kR|<1 in (22)—(24), we have a power series expansion in c— A 33
KR. It allows to obtain analytically an inverse Fourier trans- k2Nt ) (33
form for o, and to write the condition§9),(10) in dimen-

sionless form at the lateral surface1 as To orderO(e) we get
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C a,—2C(k,C+2k.D 3(az—k4C
U1=—I’2—UXX, W1:r3DUxxx+rQU2- (34) b3: 2 ( 2 ! ), b4= ( 3 L Q)
2 Po Po
(40
with coefficients
Equation(39) has a functional form similar to the equation

AN +2k3) obtained by Samsond\w.1,19 for nonlinear waves in a rod

D= 2(ki—2(N+ w))(2(2N+3u) —ky)’ (39 with free lateral surface. It admits, in particular, a traveling
solitary wave as aexactsolution. Note that the coefficients
1 [)\+2| depend now upon the wave velocity, due to Eqs.(28)—
Q=—— +C(N+4l-2m+n) (30). The terms of orde®(&?) have been neglected, when
ki—2(N+u)| 2 ). >
deriving Eq.(39). Therefore we assume?=cj+ec,+ - - -
and consider the coefficients,—b, depending orc, only,
+C2(3N+3u+4l+2m)|. (36) bs—b, dep g orgy only

while the coefficientb; may depend also or; as b;
=bh,(Co) +ebq1(Ccq,C1). Then the solitary wave solution has
The higher-order terms in the serig&l) may be obtained in  the form

a similar way, but are omitted here being unnecessary to

obtain an evolution equation for the strain waves. v=Amfcosh ?(mé), (41)
IV. NONLINEAR EVOLUTION EQUATION with
FOR LONGITUDINAL STRAIN WAVES ALONG
THE ROD AND ITS SOLUTION _ 6(byghytDy)
A= — (42)
4

Now we can derive the equation for the strain waves
along the rod. First of all, substitutin@l) into the potential

. S . To leading order the phase velocity is obtained from the
deformation energyl [Eg. (3], one can get in dimensionless g P y

equation
form that d
2_
I=a,U%+ e[, 2U Uyt 3,U3] +0(£2),  (37) Co=bad(Co), “3
with and for the functiorc,we get the equation
AN+2u C1=byy+ 4k (byh, +by), (44)
a;=—5—+2\C+ 2(N+pu)C2,
where the wave numbéder remains a free parameter.
AN+2u )
ay=— 75 C-AC"+4AD+8(A+u)CD, V. INFLUENCE OF THE EXTERNAL MEDIUM ON THE
PROPAGATION OF THE STRAIN SOLITON
N 2u ALONG THE ROD
— 2 3
a3~ 2 FACHACTH2(A+p)C7+2Q[N Let us estimate the influence of the external medium on
1 8 the solitary wave propagation along the rod. First of all, we
- 2, 2 ~3 have to solve Eq43) for all three possible cas€28)—(30).
20+ wClH 3 +2C+act 3C } As & must not exceed the yield point of the elastic material
(its usual value is less than 18) we have to compare with
+m E—202+ fcz +nc2. ¢, andc, the values obtained fary, rather than forc.
3 3 For the casg28), the velocityc, is obtained from Eq.
o (43) as
For the kinetic energy we have
o (BN+2p)pt pa(N+2p)
Po 2 2 2 2 COZ (45)
K==Z[U{=er®C(U U= CUg)]+0(e?).  (39) po(N+u+uq)

It appears always higher than the wave velocity in a free rod.

Substituting Eqs(37), (38), and(16) into Eq. (4) and using For the model29), Eq. (43) yields

Hamilton’s variational principle, we obtain the following

equation for a longitudinal strain wave=U,: 2

BN+ 2u)put pua(N+2p) +4p1p0C

4 T2
C —
U= D10 — 8 (020 gyt H D3V xxux b4(U2)xx):0y (39 0 po(N+p+ 1) 0
with AusiCi(N+2u) .
po(A+tutuy)

5  2(a;—k,C?) o _C(1+C)
1 Po o2 2 Finally, for the model30), Eq. (43) provides
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TABLE I. Phase velocities of waves in a polystyrene rod embedded in different media.

Material  ¢,X10 3 m/sec ¢, X 10 3 m/sec cy; X 1073 m/sec cy»x 103 m/sec coX 103 m/sec Model

Quartz 3.78 6.02 2.06 21or7.15 2.13 or 5.77 |
Iron 3.23 5.85 2.08 2.1 or 6.32 2.11 or 5.15 |
Copper 2.26 4.7 2.07 2.11 or 4.33 2.12 or 3.68 I, 1
Brass 2.12 4.43 2.06 2.11 or 4.02 2.12 or 3.45 I, 1
Aluminium 3.08 6.26 2.05 211 or 5.75 2.13 or 4.97 I, 1
Lead 1.09 2.41 2.01 1.83 or 2.06

(BN +2u) €2+ (C2— ) (N +2) + A poCat c2C po( N+ o —3p1)

po(Cluy—CiN+ p+ )

4

2

0

|, CooflBua (M 2u) — (3N +240)] — ApaCiN+2u) 0
po(CF = CAN+ p+ py))

(47)

Table | contains some quantitative estimates for a polystydium, which follows from the different behavior of Bessel's
rene rod and Table Il for a lead rod, respectively, both emfunctions at large values of their arguments.

bedded in different external media. The quantitigg, Cgy Now let us consider the influence of the type of external
andcgz denote velocities calculated from E@45), (46), and  medium on the existence of either compression or tensile
(47), respectively. Comparing velocities; relative toc,  |ongitudinal strain localized waves. Using the data from
andc; we can justify the applicability of case28)—(30).  Table | to compute the value @ [Eq. (42)] for a polysty-
This is noted by symbols I-lIl, respectively, in the last col- rene rod, it yields that its sign may change according to the
umn of Tables | and Il. Indeed, the mod@®) is better for  \5jyes of the parameters of the material used for the external
the contact with a polystyrene rod, while no solitary wave yadium. Therefore the solitofstrain) amplitude(41) may

may propagate when the external medium is lead. Howevepy, ;g6 its sign. The amplitude is negative for a free lateral

a solitary wave may propagate along a lead rod embedded Klrface rod and it remains negative if the external medium is,
a polystyrene external medium, as it follows from Table IlI.

) , - . say, quartz, brass, copper, or iron. However, the sign changes
Note that there exist pairs of materials, for which two or i Co=Cq, and the external medium is aluminum. Therefore,
all three models of sliding contact allow a solitary wave o : . :
propagation. Thus the balance between nonlinearity and digne c;an a”“C'P"’?t.e’ n partlcqlar, that 'for a rod embedded in
persion may be achieved at different phase velocities of thglummum an |n_|t|al pulse _W'th yelocﬂy _close .t°92. may
strain nonlinear waves. This result is of importance wherff@nsform only into a tensile soliton while an initial pulse
generating strain solitary waves in a rod embedded in ai/ith velocity close tocy; evolves to become a compression
external elastic medium. soliton.

Therefore, strain solitary waves can propagate only with Finally, let us consider the influence on the sigrcofEq.
velocities from the intervals arount; . Note that the soli- (44)]. For case I,b;;=0, hence the sign is defined by the
tary wave is a bulkdensity wave inside the rod and, simul- sign of the quantity I§,qb,+b3)/b,. For polystyrene it is,
taneously, it is a surface wave for the external mediumgenerally, negative for all of the external media in Table I,
Then, an important difference appears relative to long nonwhile for a free lateral surface it is positive. Thus, the veloc-
linear Rayleigh surface waves in Cartesian coordinates: iity ¢ of a nonlinearwave in a rod embedded in an external
our case more than one velocity interval exists where solitarynedium is lower than thEnear wave velocitycy while for a
waves may propagate. The main difference between moddgee surface rod nonlinear waves propagate faster than linear
lies in the different rate of wave decay in the external me-waves. On the other hand, the nonlinear wave velocityn

TABLE Il. Phase velocities of waves in a lead rod embedded in different external media.

Material  ¢,X 10”3 m/sec ¢;peX 1073 m/sec cy;X 1073 m/sec cypX 10~ 3 m/sec co3x 103 m/sec Model

Quartz 3.78 6.02 2.06 2.55 or 4.39 7.51 LILI
Iron 3.23 5.85 2.2 2.47 or 4.91 2.73 or 4.81 1,1
Copper 2.26 4.7 2.11 |
Brass 2.12 4.43 2.08 |
Aluminium 3.08 6.26 2.03 |

Polystyrene 1.01 2.1 1.83 0.38 or 1.81 1.840r2.06 I, 1
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FIG. 1. Rod partly embedded in an external elastic medium with o1s . . T . T T . .
sliding. | " m
a polystyrene rod embedded in external medium is higher.g
than the linear wave velocity for a rod with free lateral sur- & 1
face, C* = E/po ,.'LJIU -
X (a.n.
VI. NUMERICAL SIMULATION OF UNSTEADY STRAIN o0 I I 1 I 1 ( |) ! !
WAVE PROPAGATION 0 20 40 60 0 100 120 140 160 180 200
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Recent numerical simulation of unsteady nonlinear wave m
processes in elastic rods witlee lateral surfaceshows that
for A<O only initial compression pulses provide a solitary g
wave (41) or a wave train(see Fig. 3 if19]), while tensile =2 7 ()
initial pulses do not become localized and are destroyed by {
dispersion. On the contrary, fé&«0 only tensile strain soli- b ik 4%
tary waves may appear, and initial compression pulses ar L % (au) |
003
deStroyEd. 400 420 440 460 490 500 520 540 560 %0 [: /U

. Let us consider now thg case when the md_latera_l surface FIG. 2. Focusing and reconstruction of a strain solitary wave.
is partly free along the axis and the other part is subjected to

a sliding contact with an external elastic medium, as it iSyaye or a wave train will appear. When the initial pulse is
shown in Fig. 1. Then the nonlinear strain wave propagationot massive enough it was found[ib9], that only one new

is described in each part by its own equati88). Matching  gyjitary wave appears but there is an oscillatory decaying
is provided by the continuity of strains and its derivatives.i5i; However. the contribution of the tail to the massis

Assume that for the free surface pai; €0, k;=0) A pegjigibly small relative to the solitary wave contribution,
=A;, m=my, while for the embedded oné&=A,, m=m,. hence

Let the initial solitary wavd41) move from left to right(Fig.

1) far from the embedded part, which is supposed to be un- M,=2A,m,. (50)
deformed at the initial time. It was found ii1] that the
massM conservation in the form ComparingM ; andM ,, according to Eq(49) it follows that
d o -
M=0, M= J vax (49 Ay =Azmz. Gy

Therefore, ifA,<A; the amplitude of the solitary wave
is satisfied by equatiof89). Then using Eq(41) and(42) we  increases while its width, proportional ™, decreases,
get for the masd/ 4, hence there is focusing of the solitary wave. On the contrary,
whenA,> A, attenuation of the solitary wave is provided by
M;=2A;m,, (490  the simultaneous decrease of the amplitude and the increase
of the wave width.

The wave evolution along the embedded part, depends on Numerical simulations confirm our theoretical estimates.
the ratio betweem\; and A,. Similar to the unsteady pro- In Fig. 2 the evolution of a strain tensile solitary wave is
cesses inside a rod with the free lateral surfd®3, an initial ~ shown in a rod, having a central part embedded in an exter-
strain solitary wave will be destroyed in the embedded parthal medium. The value oA in the central part Il,A,, is
if sgn A, differs from sgnA,. Otherwise another solitary positive but smaller than the value &f in the surrounding
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FIG. 3. Attenuation and reconstruction of a strain solitary wave. ) ) )
its width becomes larger. Again both the reconstruction of

free lateral surface parts | and I&;>A,>0. In the embed- the initial wave profile and the damping of its tail are ob-
ded part II[Fig. 2(b)] the solitary wave amplitude exceeds served in the third part of a rod with free lateral surface, part
the amplitude of the initial solitary wave in Fig(a&}, while 1l in Fig. 3(c,d).
its width becomes narrower than that of the initial wave. Consider now the case of different signsfgfand assume
Therefore an increase in amplitude of the elastic strain solithat A;>0 on both free surface parts. One can see in Fig. 4
tary wave is possible even in amiformly elastic rod. This how an initial tensile solitary wave, Fig(d, is destroyed in
may overtake the yield point inside the elastically deformedhe embedded part I, Fig.(d), in agreement with our pre-
rod, hence the possible appearance of cracks or plasticityious results on the unsteady processes occurring for a free
zones. In our case the deformations of the wave front andurface rod. However, a strain wave is localized again in the
rear are equal. At variance with the strain soliton focusing inthird part of a rod with free lateral surface, Fidc# part Ill,
a rod with diminishing cross sectidr22] both theory and and finally recovers its initial shape in Fig(d}. Again
experiments show steepness of the wave front together withamping of the tail behind the solitary wave is observed.
widening of its rear. Moreover, plateaudevelops in the tail  Accordingly, both compression and tensile initial pulses may
of the solitary wave. These differences could be caused bgroduce localized strain solitary waves in a rod partly em-
the absence of masand energyconservation for strain soli- bedded in an external elastic medium with sliding.
tary waves in a rod with diminishing cross section. Moreover, the amplitude of the solitary wave generated in
In the case treated in this paper, the solitary wave does nastuich a manner may be greater than the magnitude of the
lose massM, hence its original shape is recovered wheninitial pulse. This case is shown in Figs. 5, 6 wheke
traversing part Il in Fig. &,d). One can see that an oscilla- <0, A,>0, and|A;|<A,. One can see in Fig. 5 how an
tory tail of the solitary wave in Fig. @) is less pronounced initially localized rectangular tensile pulse, Figah is de-
than the tail in Fig. &), in agreement with Eq51). stroyed in the free surface part |, Fighh However, a wave
When A,>A;>0, an initial tensile strain solitary wave, train of solitons appears, when a destroyed strain wave
Fig. 3(a), is drastically attenuated as soon as it enters theomes to the embedded part, Fig&e,8). The amplitude of
embedded area, Fig(I3, and its amplitude decreases while the first soliton in Fig. &) exceeds the magnitude of the
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FIG. 5. Generation of a tensile strain solitary wave train in a FIG. 6. Delocalization of a strain solitary wave in the absence of

rod. The elastic properties of the rod are chosen such that tensifgxternal medium.

wave propagation cannot occur in the absence of contact with an
externgl rgegium = agss. Thus our theory may béormally extended to ac-

count for the influence of surface-tension-like effects on the
- —— _ propagation of strain solitary waves. This “surface tension”
initial rectangular pulse in Fig.(8). In the absence of sur does not alter the phase velocitythough it may affect the

rounding external medium this rod waveguide does not Su'.oéign of the wave amplitude. Although the problem of obtain-

golrt telr}sng soht:;ry wa}verrogagatmn, and a strain wave I19’ng_me_aningful values of the “surface tension” coefficient in
elocalized as shown in F1g. ©. solids is far from being solved, the data given[&b] for
some materials seem to be reliable. The theory developed
VIl. POSSIBLE APPLICATIONS OF THE THEORY here may be used for the determination of the surface-
tension-like coefficient. Indeed, the expressiob b,
+bs3)/b, containsacis, hence, by measuring solitary wave
The theory developed may be applied to the study oparameters in a rod with different surface roughness, one can
surface-tension-like effects in solids, when there are imperebtain the corresponding values af¢;. Accordingly, an
fections on the rod surface, see, e[d4]. Recently, it was estimation of the influence of the surface tension on the soli-
experimentally found15] that the stresses due to surfacetary wave parameters is useful for applying the theory to
effects, may be rather large. Thedi] shows that surface nondestructiye testing, .because a bulk strain solitary wave
stresses, acting on the lateral surface of an elastic body, magl) keeps its shape, independently of the lateral surface

be modelled by using normal stresses in the form roughness, while the wave parametéamplitude, velocity,
etc) contain information about it.

A. Surface-tension-like effects

O = AefWyx s (52 )
B. Murnaghan’s moduli

with ae¢s being a surface-tension-like coefficient. In this case  The isotropic third-order Murnaghan’s moduli,ih,n)
the boundary condition&6), (27) are valid withk;=0, k,  are not known for many materials. The third-order crystalline
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TABLE lIl. Deviations in percentfrom Eqg. (53). 0123—n+2m—2l‘ C144—M+0.5n
4= c ; 57T o ;
Material 81 8, 83 84 S5 S 123 144
Aluminium 60 15 111 92 208 50 _|Cp1—4m—2I
Molybdenum 27 52 115 305 604 39 %= Ci11

Indeed, there is interest in the direct measurement of the
moduli have been measured for many matefid|s[23], and ~ Murnaghan moduli. Our theory gives one possible way. We
it was proposed i24] to use them to obtain the isotropic see from Eq(40) that
moduli. For cubic crystals the relationships are

bs=0o+dil +0,m-+qsn (54)
C110=2l, Cie6=M, Cu56=N/4, Cio5=n—2mM+2I,
is a linear combination of Murnaghan’s moduli, with
0144:m_n/2, Ci111—= 4m+ 2|, (53)
H

2p200 )~ KT

wherec;j, denotes the corresponding third-order crystalline Qo
elastic modulus for cubic crystals. However, independent

measurements of isotropic moduli for some materials do N here

satisfy these analytical relationships. For instance, for alumi-

num and molybdenum, for which both the Murnaghan py=48,(\+ u)3(3\+2u)+3k}(A+2u) —3k3(A+4pu)
moduli and the crystalline cubic moddyi23] are known, we

can estimate the discrepancy. Using E@S) we calculate X (BN +4u)+12K3(3N+2) (N2 + 6\ o+ 6,42)

the deviations, see Table IlI, ) 5
— 6Ky (A+u) (BN +2u)(N+ 16N u+16u°);

_|cue 2I’_ _|Cae6— . _ 0456—0.251‘_ and
Ciz | Cies | Cys6 '
|
] Cpk[KE+ k(N = 4p) +au(N+p)]
1_ 1
pol 2(N+ u) —K§]*

2(ky—3N—2u)[K3—Kk3(5N +6.) + Ky (3N2+ 200 o+ 12u?) — 4 (3N2+5h + 2 u?) ]
q2= ;

pol 20N+ p) — k24
BN2(N+ u—ky)

dz= .

> pol20+ ) — K2

The coefficientsqy—04, b, are functions of usually of the first and second kinds and Jacobi functions modulus,
known Lamecoefficients and densities of the rod and therespectivelyA is defined by Eq(42). For the wave number
external medium. The coefficiert, additionally depends k we have
upon the wave amplitudetl),(42). Hence, Eq(54) may be
considered as a linear inhomogeneous algebraic equation for K= 2K(k) (56)
the Murnaghan modulil(m,n). Taking three different exter- Len
nal media we may have three equations and obtain the values
of I,m,n. The necessary and sufficient condition for a non-WhereL, is the length of the cnoidal wave, which is defined
trivial solution is the nonzero value of the determinant of the@s & distance between neighboring maxima or minima. Sup-
system. Calculations for several elastic materials show that ROSe, for exampleA>0. Then
usually does not vanish.

As the width or wavelength of a solitary wave does not U man= AK2
have a precise definition it is better to search for periodic

trains. E ti i it h lution i
wave trains. =qua 10(89), indeed, admits such a solution in Using Eq.(57) the value of the Jacobi modulug and, there-
the form of a cnoidal wave .
fore bothK(«) andE(«)] may be obtained from the equa-
tion

E
1——

K . (57

K

) E
y Umm:Ak 1-——«

E
v=AK? 1—E—K2+K2cn2(ke|;<) (55)

2 _
(Vmax= Vmin) = K Vmax=0,

whereK(«),E(x) and x are the complete elliptic integrals [1_ K
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wherev nmax: Umin May be measured as for the solitary wavelowed” velocities. Moreover, depending on the elasticity of
amplitude in[8,9]. Next, the wave number may be obtainedthe surrounding external medium the longitudinal strain
from Eq. (56) using the measured wavelendth,,. Finally =~ wave in a rod may be a tensile or a compression wave.
eitherv .y Or v min may be used for the procedure described We have also numerically followed the evolution of the
for the solitary wave case. For negatidewe have to ex- nonlinear wave in a rod partly embedded in an elastic exter-
changev may, Umin IN EQq. (57). The influence of dissipation nal medium. Focusing, attenuation, or delocalization of a
on the propagation of nonlinear elastic waves in a rod hastrain solitary wave is observed in such a case depending on
been estimated if8]. It was found that it cannot be impor- the elastic properties of the external medium. Moreover, in
tant, and cause negligible wavelength variation. Moreovergach of these cases there is reappearance of the original soli-
weak dissipation may be described analytically as with thdary wave when reemerging from the embedded area. As a
influence of slow variable cross-sections of the [@&®]. result of wave focusing exceeding the yield point of the elas-
Therefore, with a cnoidal wave there seems to be no problertic rod material may occur, as well as the possibility of lo-
in determining with high accuracy all wave characteristics.calization of both compression or tensile pulses. All of these
Unfortunately, to our knowledge no experimental data areproperties could be useful when designing elastic structures,
available concerning the generation of such a wave even in @r establishing criteria to assess their durability and fracture
rod with free lateral surface. Thus we leave this matter as aechanics.

challenge for experimentalists. A generalization of the theory has been proposed to for-
mally account for surface-tension-like effects on the evolu-
VIIl. CONCLUSIONS tion of long nonlinear strain waves. This extension of the

theory may also be of interest for using nonlinear waves as

A theory has been developed for the description of nonprobes in nondestructive testing. Finally, we have shown
linear longitudinal strain waves in an elastic rod embedded ithow the theory has potential for a direct determination of the
another external elastic medium with S|Id|ng contact. FirSt,Murnaghan third-order isotropic elastic moduli of the mate-

relationships were obtained for the normal stresses acting offlal by measuring the parameters of the wave propagating
the rod lateral surface. Then, in the long wave limit we de-along the rod.

rived the nonlinear evolution equation for strain waves along
the rod, and an exact solitary wave solution has been ob-
tained. The analysis of the solution allowed us to conclude
that the influence of the external medium defines an interval A.V.P. is grateful to the Spanish Ministry of Education
of phase velocities in which a solitary wave can propagate.and Science for their support at the Instituto Pluridisciplinar,
In contrast tosurfacewave propagation in Cartesian co- UCM. This research has been supported by DGIG3pain

ordinates for waveguides, where only one wave velocity isunder Grant No. PB 96-0599, and by the European Union
possible, here we have two or even three intervals of “al-under Network Grant No. FRB FM RX-CT96-10.

ACKNOWLEDGMENTS

[1] J. Coste and C. Montes, Phys. Rev34 3940(1986. [13] A. V. Bushman, I. V. Lomonosov, V. |. Fortov, K. V. Khish-
[2] C. Montes, Phys. Rev. 86, 2976(1987. chenkol, M. V. Zhernokletov, and Yu. N. Sutulov, JEBR,
[3] F. D. Murnaghan,Finite Deformations of an Elastic Solid 895 (1996.
(Wiley, New York, 195). [14] S. V. Biryukov, Yu. V. Gulyaev, V. V. Krylov, and V. P.
[4] A. 1. Lurie, Nonlinear Theory of ElasticityElsevier, Amster- Plessky, Surface Acoustic Waves in Inhomogeneous Media
dam, 1990. (Nauka, Moscow, 1991(in Russian.
[5] D. R. Bland, Nonlinear Dynamic Elasticity (Blaisdell, ~ [15] E. G. Nikolova, Zh. &sp. Teor. Fiz.72, 545 (1977 [Sov.
Waltham, MA, 1969. Phys. JETR45, 285 (1977)].
[6] Nonlinear Waves in Soligedited by A. Jeffrey and J. Engel- [16] A- D. Kerr, J. Appl. Mech.31, 491 (1964.
brecht(Springer, New York, 1994 [17] N. S. Shevyakhov, Akust. Zh23, 155 (1977 [Sov. Phys.

Acoust.23, 86 (1977)].

[18] Yu. V. Gulyaev and N. I. Polsikova, Akust. ZB4, 504(1978
[Sov. Phys. Acoust24, 287 (1978].

[19] A. M. Samsonov, Acta Tech. CSA¥2, 93 (1997).

[20] H. D. McNiven and J. J. McCoy, ifR. Mindlin and Applied
Mechanics edited by G. HerrmanniPergamon, New York,

[7] Recent Developments in Surface Acoustic Waadised by D.
F. Parker and G. A. MaugitSpringer, Berlin, 198}/

[8] G. V. Dreiden, Yu. I. Ostrovsky, A. M. Samsonov, |. V. Se-
menova, and E. V. Sokurinskaya, zZh. Tekh. F&8 2040
(1988 [Sov. Phys. Tech. Phy83, 1237(1988)].

[9] G. V. Dreiden, A. V. Porubov, A. M. Samsonov, |. V. Se- 1974, pp. 197-226.
menova, and E. V. Sokurinskaya, Tech. Phys. L2#f. 415  [21] A E.H. Love,A Treatise on the Mathematical Theory of Elas-
(1995. ticity (University Press, Cambridge, 1927

[10] A. M. Samsonov, G. V. Dreiden, A. V. Porubov, and I. V. [22] A. M. Samsonov, G. V. Dreiden, A. V. Porubov, and I. V.
Semenova, Tech. Phys. Le®2, 891(1996. Semenova, Phys. Rev. B, 5778(1998.

[11] A. M. Samsonov, Dokl. Akad. Nauk99, 1083(1988 [Sov.  [23]I. N. Frantsevich, F. F. Voronov, and S. A. Bakufastic
Phys. Dokl.33, 298(1988]; 277, 332(1984) [29, 586(1984]. Constants and Elastic Moduli for Metals and Non-metals

[12] V. A. Shutilov, Foundations of the Physics of Ultrasound (Naukova Dumka, Kiev, 1982in Russian.

(University Press, Leningrad, 1980n Russiai. [24] R. N. Thurston and K. Brugger, Phys. R&\33 1604(1964).



