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Strain solitary waves in an elastic rod embedded in another elastic external medium with sliding
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The propagation of nonlinear elastic longitudinal strain solitary waves~i.e., strain solitons! in a cylindrical
rod being in sliding contact with an external elastic medium is considered. The waves have phase velocity in
an interval, determined by the elastic properties of the external medium. Furthermore, it is shown that relative
to the free rod case the external medium may alter the type of strain soliton. The theory developed can formally
be used to estimate the surface-tension-like effects resulting from imperfections of the rod’s lateral surface.
Finally, from the results obtained an approach is suggested for the possible experimental determination of the
Murnaghan third-order isotropic elastic moduli.@S1063-651X~98!04309-8#

PACS number~s!: 42.25.Bs, 42.65.Tg, 62.30.1d, 81.70.2q
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INTRODUCTION

The study of strainlong, quasistationary, localized wave
of permanent form~solitary waves! is of theoretical and ex-
perimental interest because these waves may propagate
transfer energy over long distances along elastic wavegui
Being rather stable and powerful, the waves may cause
appearance of plasticity zones or microcracks and eventu
the breakdown of a waveguide, see e.g.,@1,2#. Therefore, the
study of the behavior of such waves is of importance for
assessment of the durability of elastic materials and st
tures, methods of nondestructive testing, determination of
physical properties of both standard~e.g., brass! and new
elastic materials, and, particularly, polymeric solids. Oth
possible applications of strain nonlinear waves come fr
their permanent shape property and from the dependenc
their amplitude, phase velocity, etc. upon the material pr
erties and elasticity of the waveguide.

In contrast to the nonlinear static theory the developm
of the nonlinear elasticdynamic theory is far from being
complete. It is only rather recently that basic research be
to appear@3–6#. The lack of understanding of nonlinea
strain-wave propagation comes also from a lack of exp
ments. However, there are several papers devoted to bot
theoretical and the experimental study ofenvelopestrain
solitary waves~generally, surface waves!, governed, e.g., by
the nonlinear Schro¨dinger equation~see, e.g.,@7#!. Only in
the last decade have bulk or density strain solitary wa
been studied and generated in rods@8,9# and in plates@10#.
Recent experiments were motivated by the theory develo
in @11#. In particular, worth noting is the generation of com
pression density solitons in polystyrene rods. Polystyrene
sorbs well linear acoustic waves and is used in many dev
@12#. Moreover, as it possesses high yield point as well
high wear and radiation resistance, it has been used as p
layered targets in nuclear fusion experiments~see@13#!.

Stresses on the lateral surface of an elastic wavegu
e.g., an elastic rod, may appear due to its interaction with
surrounding external medium, as in some technological
vices. Various types of contact models can be used at
PRE 581063-651X/98/58~3!/3854~11!/$15.00
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interface between the rod and the external medium. The
~strong! contact model is used when there is continuity
both normal and shear stresses, and displacements. Alte
tively, in a weak contact, friction may appear at the interfa
hence a discontinuity in the shear stresses. Slippage prov
another form of contact at the interface, in which only t
continuity of the normal stresses and displacements is
sumed. Surface stresses may also arise due to the impe
manufacturing of the lateral surface of the waveguide and
formally like the ’’surface tension’’ on the free surface of
liquid @14,15#.

The analytical solution of the contact problem is rath
difficult even in the framework of the linear elasticity theor
see @16# and references therein. However, considera
progress has been achieved to account for short nonli
surface acoustic waves propagating along the interface
tween elastic media@7#.

Recently, in the studies of strain waves in a rod, intera
ing with an elastic external medium, attention was mos
focused on the propagation ofsurfacestrain waves along the
lateral rod surfaceperpendicular to its axis ~see, e.g.,
@17,18#!. Here, however, we shall considerbulk density
strain waves, propagatingalong the rod axis. For a recen
review of the results concerning a rod with free lateral s
face see@19#, where the first useful approximation to tack
the problem is to reduce the three-dimensional~3D! problem
to the 2D one by neglecting the rod torsion. Axial symme
of the displacements and strain fields inside the rod is a
assumed. Further simplifications can be made using exp
itly some features of the physical straininside the rod@20#.
Thus, the so-called plane cross- sections hypothesis has
proposed for the longitudinal displacementu along the
rod axis, u(x,r ,t)5U(x,t), while the shear displacemen
w(x,r ,t) are assumed to obey Love’s relationsh
w52nrU x @21#. Herex andr are coordinates along the ro
axis and radius, respectively;t denotes time, andn is the
Poisson ratio. Although rather useful in the study of fr
surface rods, these assumptions fail to properly account
contact problems, because they rule out normal stresse
the rod lateral surface, hence there is discontinuity of norm
3854 © 1998 The American Physical Society
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PRE 58 3855STRAIN SOLITARY WAVES IN AN ELASTIC ROD . . .
stresses at the interface of the rod and the external med
In this paper we provide an appropriate description

long nonlinear strain waves propagating in anelasticcylin-
drical rod interacting with an external and differentelastic
medium. However, we limit ourselves to the case of asliding
contact . The formulation of the problem is given in Sec
The relationships for the normal stresses acting on the la
surface of the rod are obtained in Sec. II, by studying se
rately the problem inside the rod and in the surrounding e
tic medium. Section III is devoted to the derivation of th
relationships between strains and displacements inside
rod that satisfy the imposed boundary conditions at its lat
surface. Then an evolution equation is derived in Sec. IV
the propagation of longitudinal strain waves parallel to
axis of the rod. The influence of the elastic properties of
external medium on the solitary wave propagation inside
rod is analytically studied in Sec. V. The nonlinear tempo
evolution is studied numerically in Sec. VI for the rod part
embedded in the external medium. In Sec. VII the possibi
of a formal extension of the theory to account for surfa
tensionlike effects is discussed. A procedure is suggested
the possible determination of the Murnaghan moduli fro
the knowledge of the characteristics of the solitary wa
propagating along the rod. Sec. VIII deals with some conc
sions.

I. FORMULATION OF THE PROBLEM

Let us consider an isotropic, axially infinitely extende
elastic rod surrounded by another albeit different elastic m
dium, in which it may slide without friction. We shall con
sider the propagation of longitudinal strain waves of sm
but finite amplitude in the rod. Axisymmetry leads to usi
cylindrical Langrangian coordinates (x,r ,w), wherex is the
axis of the rod,we@0,2p#, 0<r<R. When torsions are
neglected, the displacement vector isVW 5(u,w,0). The strain
field in the nonlinearly elastic medium in the reference co
figuration is defined by Cauchy-Greenfinite deformation ten-
sor C,

C5@¹W VW 1~¹W VW !T1¹W VW •~¹W VW !T#/2

@written in terms of a vector gradient¹W VW and its transpose
(¹W VW )T#, which is the generalization of linear strain tensor.
describes the so called geometrical nonlinearity, as discu
by Engelbrecht@6#. Once the reference configuration is d
fined we use Hamilton’s principle to obtain the evolution
nonlinear waves. Indeed, for an adiabatic deformation
Langrangian density per unit volumeL can be obtained us
ing the difference between the kinetic energy densityK and
the volume densityP of the internal energy, both per un
volume. We have

L5K2P5
r0

2 F S ]u

]t D
2

1S ]w

]t D 2G2P~ I k! ~1!

where r0 is the rod material density att5t0, while I k ,k
51,2,3 are the invariants of tensorC:

I 1~C!5trC, I 2~C!5@~ trC!22trC2#/2, I 3~C!5detC.
~2!
m.
f
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Strains are assumed weak enough to allow neglecting
significant strain-induced thermodynamic changes. ThenP
can be identified as a measure of potential strain energy
sity. We choose Murnaghan’s approximation for deformat
energy due to its applicability to a wide class of nonline
~hyper!elastic materials@3,4#:

P5
l12m

2
I 1

222mI 21
l 12m

3
I 1

322mI1I 21nI3 . ~3!

The first two terms in Eq.~3! account for linear elasticity,
hence the second order elastic moduli, or the Lame´ coeffi-
cients (l, m), characterize linear elastic properties of t
isotropic material. Other terms in Eq.~3! describe material or
physical nonlinearity@3,4,6#. Accordingly, the third order
elastic moduli, or the Murnaghan moduli (l , m, n) ~Ref.
@3#! account for nonlinear elastic properties of the isotro
material. Then we set to zero the variation of the act
functional,

dS5dE
t0

t1
dtF2pE

2`

`

dxE
0

R

rLdr1AG50, ~4!

whereA is the work done by external forces. The integrati
in brackets in Eq.~4! is carried out at the initial timet5t0.
Initially, the rod is supposed to be in its natural, equilibriu
state.

The displacement vector for thelinearly elastic external
medium may be written asVW 15(u1 ,w1,0). Its density is
noted byr1, and its elastic properties are characterized
the Lamécoefficients (l1, m1). Any disturbances due to th
wave propagation inside the rod are transmitted to the ex
nal medium through displacements and stresses norma
the rod surface only when contact withslippageis consid-
ered. Disturbances are assumed to decay to zero in the
ternal medium far from the rod. The normal strains as wel
the displacements inside the rod are smaller than those a
the rod axis. Thus we assume that displacements and st
are infinitesimal in the external medium, hence as alre
said it is a linear elastic one. Then for the external medi
we have

r1u1,tt2~l112m1!u1,zz2~l11m1!S w1,rz1
w1,x

r D
2l1S u1,rr 1

u1,r

r
1w1,rx1

w1,x

r D50, ~5!

r1w1,tt2~l112m1!S w1,rr 1
w1,r

r
2

w1

r 2 D 2m1w1,xx

2~l11m1!u1,rx50. ~6!

The following boundary conditions~b.c.s! are imposed:

w→0, at r →0, ~7!

w5w1 , at r 5R, ~8!

Prr 5s rr , at r 5R, ~9!



a-

ts
m

s
e
th

ria

s

th

na

th
t

al

e
vari-
.

l
ely.

-

-
s
r

3856 PRE 58PORUBOV, SAMSONOV, VELARDE, AND BUKHANOVSKY
Prx50, s rx50, at r 5R, ~10!

u1→0, w1→0 at r→`, ~11!

where Prr , Prx denote the components of the Piol
Kirchhoff stress tensorP @4#,

Prr 5~l12m!wr1l
w

r
1lux1

l12m1m

2
ur

2

1
3l16m12l 14m

2
wr

21~l12l !wr

w

r
1

l12l

2

w2

r 2

1~l12l !uxwr1~2l 22m1n!ux

w

r
1

l12l

2
ux

2

1
l12m1m

2
wx

21~m1m!urwx , ~12!

Prx5m~ur1wx!1~l12m1m!urwr1~2l12m2n!ur

w

r

1~l12m1m!uxur1
2m2n

2
wx

w

r
1~m1m!wxwr

1~m1m!uxwx . ~13!

The quantitiess rr ands rz are the corresponding componen
of the linear stress tensor in the surrounding, external
dium:

s rr 5~l112m1!w1,r1l1

w1

r
1l1u1,x ~14!

s rx5m1~u1,r1w1,x!. ~15!

The conditions~8!–~10! define thesliding contact, while the
longitudinal displacementsu andu1 are left free at the inter-
face r 5R.

The Piola-Kirchhoff tensor coincides with the linear stre
tensor for infinitesimally small strains. This tensor is chos
among other finite strain tensors because it is defined in
reference configuration@4#. Note that the coefficients inPrr
and Prx depend upon both the second-order Lame´ coeffi-
cientsl andm and the Murnaghan moduli,l ,m,n. Hence the
tensorP takes into account both the geometrical and mate
nonlinearities.

The linear equations~5! and ~6! are solved together with
the boundary conditions~8!, ~10!, and ~11!, assuming that
the displacementw at the interface is a given function ofx
andt, hencew(x,t,R)[W(x,t). Then the linear shear stres
s rr at the interfacer 5R is obtained as a function ofW and
its derivatives, thus providing the dependence only on
rod characteristics in the right-hand side of the b.c.@Eq. ~9!#.
The same is valid for the elementary work done by exter
forces atr 5R:

dA52pE
2`

`

s rr dwdx. ~16!

Satisfaction of the b.c. on the rod lateral surface yields
relationships between displacements and strains inside
e-

s
n
e

l

e

l

e
he

rod, allowing us to separate variables in the Lagrangian~1!
and to derive one nonlinear equation for long longitudin
waves using Hamilton’s variational principle~4!.

II. EXTERNAL STRESSES ON THE ROD LATERAL
SURFACE

In this section the linear problem~5,6! will be solved with
the boundary conditions~8!, ~10! and ~11!. As we focus at-
tention on travelling waves along the axis of the rod w
assume that all variables depend only upon the phase
able u5x2ct, wherec is the phase velocity of the wave
Assuming that the unknown functionsu1 ,w1 are

u15Fu1C r1
C

r
, w15F r2Cu , ~17!

thenF andC satisfy the equations

F rr 1
1

r
F r1S 12

c2

cl
2D Fuu50, ~18!

C rr 1
1

r
C r2

1

r 2
C1S 12

c2

ct
2D Cuu50, ~19!

wherecl and ct are the velocities of the bulk longitudina
and shear linear waves in the external medium, respectiv
They depend on the density and the Lame´ coefficients,cl

2

5(l112m1)/r1 , andct
25m1 /r1.

To solve Eqs.~18!, ~19! we introduce the Fourier trans
forms of F andC:

F̃5E
2`

`

Fexp~2ku!du, C̃5E
2`

`

Cexp~2ku!du

that reduces Eqs.~18!,~19! to the Bessel equations

F̃ rr 1
1

r
F̃ r2k2aF̃50, ~20!

C̃ rr 1
1

r
C̃ r2

1

r 2
C̃2k2bC̃50, ~21!

with a512c2/cl
2 , andb512c2/ct

2 . The ratios betweenc,
cl andct define the signs ofa andb, hence three possible
sets of solutions to Eqs.~20!,~21! appear, vanishing at infin
ity due to b.c.@Eq. ~11!#. Using the boundary condition
~8!,~10!, we obtain the following relationships for the Fourie
images of normal stresses at the lateral surfacer 5R:

~i! when 0,c,ct ,

s̃ rr 5
m1W̃

12bS 2~b21!

R
1

k~11b!2K0~AakR!

AaK1~AakR!

2
4kAbK0~AbkR!

K1~AbkR!
D ; ~22!

~ii ! whenct,c,cl ,
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s̃ rr 5
m1W̃

12bS 2~b21!

R
1

k~11b!2K0~AakR!

AaK1~AakR!

2
4kAbJ0~A2bkR!

J1~A2bkR!
D ; ~23!

~iii ! whenc.cl

s̃ rr 5
m1W̃

12bS 2~b21!

R
1

k~11b!2J0~A2akR!

A2aJ1~A2akR!

2
4kAbJ0~A2bkR!

J1~A2bkR!
D ; ~24!

whereJi and Ki ( i 50,1) denote the corresponding Bess
functions.

We shall see in the next section that in the long wave li
the normal stresss rr has one and the same functional form
the lateral surface of the rod in all three cases~22!–~24!. The
main difference in the stress~and strain! fields in the external
medium is how they vanish at infinity. This depends on
monotonic decay ofKi and the oscillatory decay ofJi when
R→`. Note that the dependence of the strain wave beha
on the velocities of bulk linear waves,cl , ct , is known, in
particular, for acoustic transverse Love waves propagatin
an elastic layer superimposed on an elastic half-space@6,7#.

III. DERIVATION OF STRAIN-DISPLACEMENT
RELATIONSHIPS INSIDE THE ROD

To solve the nonlinear problem inside the elastic rod,
have to simplify the relationships between longitudinal a
shear displacementsu and w. These relationships are ob
tained, using conditions on the free lateral surfacer 5R,
namely, the simultaneous absence of the tangential stre
and the continuity of the normal ones. We search forelastic
strain waves with sufficiently small magnitudeB!1, and a
long wavelength relative to the rod radiusR, R/L!1. L
scales the wavelength along the rod. An interesting case
pears when there is balance between~weak! nonlinearity and
~weak! dispersion as for a rod with free lateral surfa
@11,19#. Then

«5B5S R

L D 2

!1 ~25!

is the smallness parameter of the problem. The linear pa
longitudinal strain along the rod axisCxx is ux . Then choos-
ing L as a scale alongx, one getsBL as a scale for the
displacementu. Similarly, the linear part of transverse strai
Crr , is wr . We use the scaleBR for the displacementw, by
choosingR as a length scale along the rod radius. Then w
ukRu!1 in ~22!–~24!, we have a power series expansion
kR. It allows to obtain analytically an inverse Fourier tran
form for s rr and to write the conditions~9!,~10! in dimen-
sionless form at the lateral surfacer 51 as
l

it
t

e

or

in

e
d

ses

p-

of

h

-

~l12m!wr1~l2k1!w1lux1
l12m1m

2
ur

2

1«S 3l16m12l 14m

2
wr

21~l12l !wwr1
l12l

2
w2

1~l12l !uxwr1~2l 22m1n!uxw1~m1m!urwx

1
l12l

2
ux

22k2wxxD1«2
l12m1m

2
wx

25O~«3!,

~26!

mur1«„mwx1~l12m1m!urwr1~2l12m2n!urw1~l

12m1m!uxur…1«2S 1
2m2n

2
wwx1~m1m!wxwr

1~m1m!uxwxD5O~«3!. ~27!

At the rod lateral surfaceW[w, Wxx[wxx . Moreover, for
0,c,ct

k1522m1 , k25
m1c2~g2 ln2!

ct
2

, ~28!

while for ct,c,cl

k15
2m1~4ct

22c2!

c2
,

k25
m1ct

2

c2 S 12
c2

ct
2

1S 22
c2

ct
2D 2

~g2 ln2!D , ~29!

and forc.cl ,

k15
2m1@c2~ct

22cl
2!13cl

2ct
224ct

4#

ct
2~cl

22c2!
, k25

m1c2

4ct
2

~30!

with g50.577 215 7 Euler’s constant.
The unknown functionsu,w will be found in power series

of «:

u5u01«u11«2u21•••, w5w01«w11«2w21•••.
~31!

Substituting Eq.~31! in Eqs.~26!, ~27!, and equating to zero
all terms of the same order of«, we find that the plane
cross-section hypothesis and Love’s relation are valid in
leading order only:

u05U~x,t !, w05rCUx , ~32!

with

C5
l

k122~l1m!
. ~33!

To orderO(«) we get
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u152r 2
C

2
Uxx , w15r 3DUxxx1rQUx

2 , ~34!

with coefficients

D5
l~l12k2!

2„k122~l1m!…„2~2l13m!2k1…
, ~35!

Q5
1

k122~l1m!Fl12l

2
1C~l14l 22m1n!

1C2~3l13m14l 12m!G . ~36!

The higher-order terms in the series~31! may be obtained in
a similar way, but are omitted here being unnecessary
obtain an evolution equation for the strain waves.

IV. NONLINEAR EVOLUTION EQUATION
FOR LONGITUDINAL STRAIN WAVES ALONG

THE ROD AND ITS SOLUTION

Now we can derive the equation for the strain wav
along the rod. First of all, substituting~31! into the potential
deformation energyP @Eq. ~3#, one can get in dimensionles
form that

P5a1Ux
21«@a2r 2UxUxxx1a3Ux

3#1O~«2!, ~37!

with

a15
l12m

2
12lC12~l1m!C2,

a252
l12m

2
C2lC214lD18~l1m!CD,

a35
l12m

2
1lC1lC212~l1m!C312Q@l

12~l1m!C#1 l F1

3
12C14C21

8

3
C3G

1mF2

3
22C21

4

3
C3G1nC2.

For the kinetic energy we have

K5
r0

2
@Ut

22«r 2C~UtUxxt2CUxt
2 !#1O~«2!. ~38!

Substituting Eqs.~37!, ~38!, and~16! into Eq. ~4! and using
Hamilton’s variational principle, we obtain the followin
equation for a longitudinal strain wave,v5Ux :

v tt2b1vxx2«„b2vxxtt1b3vxxxx1b4~v2!xx…50, ~39!

with

b15
2~a12k1C2!

r0
, b25

C~11C!

2
,

to

s

b35
a222C~k2C12k1D !

r0
, b45

3~a32k1CQ!

r0
.

~40!

Equation~39! has a functional form similar to the equatio
obtained by Samsonov@11,19# for nonlinear waves in a rod
with free lateral surface. It admits, in particular, a traveli
solitary wave as anexactsolution. Note that the coefficient
depend now upon the wave velocity,c, due to Eqs.~28!–
~30!. The terms of orderO(«2) have been neglected, whe
deriving Eq.~39!. Therefore we assumec25c0

21«c11•••

and consider the coefficientsb22b4 depending onc0 only,
while the coefficientb1 may depend also onc1 as b1
5b10(c0)1«b11(c0 ,c1). Then the solitary wave solution ha
the form

v5Am2cosh22~mu!, ~41!

with

A5
6~b10b21b3!

b4
. ~42!

To leading order the phase velocity is obtained from
equation

c0
25b10~c0!, ~43!

and for the functionc1we get the equation

c15b1114k2~b10b21b3!, ~44!

where the wave numberk remains a free parameter.

V. INFLUENCE OF THE EXTERNAL MEDIUM ON THE
PROPAGATION OF THE STRAIN SOLITON

ALONG THE ROD

Let us estimate the influence of the external medium
the solitary wave propagation along the rod. First of all,
have to solve Eq.~43! for all three possible cases~28!–~30!.
As « must not exceed the yield point of the elastic mater
~its usual value is less than 1023) we have to compare with
cl andct the values obtained forc0, rather than forc.

For the case~28!, the velocityc0 is obtained from Eq.
~43! as

c0
25

~3l12m!m1m1~l12m!

r0~l1m1m1!
. ~45!

It appears always higher than the wave velocity in a free r
For the model~29!, Eq. ~43! yields

c0
42

~3l12m!m1m1~l12m!14m1r0ct
2

r0~l1m1m1!
c0

2

1
4m1ct

2~l12m!

r0~l1m1m1!
50. ~46!

Finally, for the model~30!, Eq. ~43! provides



PRE 58 3859STRAIN SOLITARY WAVES IN AN ELASTIC ROD . . .
c0
42

~3l12m!mct
21~ct

22cl
2!m1~l12m!14m1r0ct

41ct
2cl

2r0~l1m23m1!

r0~cl
2m12ct

2~l1m1m1!!
c0

2

1
ct

2cl
2@3m1~l12m!2m~3l12m!#24m1ct

4~l12m!

r0~cl
2m12ct

2~l1m1m1!!
50. ~47!

TABLE I. Phase velocities of waves in a polystyrene rod embedded in different media.

Material ct31023 m/sec cl31023 m/sec c0131023 m/sec c0231023 m/sec c0331023 m/sec Model

Quartz 3.78 6.02 2.06 2.1 or 7.15 2.13 or 5.77 I
Iron 3.23 5.85 2.08 2.1 or 6.32 2.11 or 5.15 I
Copper 2.26 4.7 2.07 2.11 or 4.33 2.12 or 3.68 I, II
Brass 2.12 4.43 2.06 2.11 or 4.02 2.12 or 3.45 I, II
Aluminium 3.08 6.26 2.05 2.11 or 5.75 2.13 or 4.97 I, II
Lead 1.09 2.41 2.01 1.83 or 2.06
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Table I contains some quantitative estimates for a poly
rene rod and Table II for a lead rod, respectively, both e
bedded in different external media. The quantitiesc01, c02
andc03 denote velocities calculated from Eqs.~45!, ~46!, and
~47!, respectively. Comparing velocitiesc0i relative to ct
and cl we can justify the applicability of cases~28!–~30!.
This is noted by symbols I–III, respectively, in the last co
umn of Tables I and II. Indeed, the model~28! is better for
the contact with a polystyrene rod, while no solitary wa
may propagate when the external medium is lead. Howe
a solitary wave may propagate along a lead rod embedde
a polystyrene external medium, as it follows from Table
Note that there exist pairs of materials, for which two or ev
all three models of sliding contact allow a solitary wa
propagation. Thus the balance between nonlinearity and
persion may be achieved at different phase velocities of
strain nonlinear waves. This result is of importance wh
generating strain solitary waves in a rod embedded in
external elastic medium.

Therefore, strain solitary waves can propagate only w
velocities from the intervals aroundc0i . Note that the soli-
tary wave is a bulk~density! wave inside the rod and, simu
taneously, it is a surface wave for the external mediu
Then, an important difference appears relative to long n
linear Rayleigh surface waves in Cartesian coordinates
our case more than one velocity interval exists where soli
waves may propagate. The main difference between mo
lies in the different rate of wave decay in the external m
-
-

r,
in

.
n

is-
e

n
n

h

.
-

in
ry
es
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dium, which follows from the different behavior of Bessel
functions at large values of their arguments.

Now let us consider the influence of the type of extern
medium on the existence of either compression or ten
longitudinal strain localized waves. Using the data fro
Table I to compute the value ofA @Eq. ~42!# for a polysty-
rene rod, it yields that its sign may change according to
values of the parameters of the material used for the exte
medium. Therefore the soliton~strain!! amplitude~41! may
change its sign. The amplitude is negative for a free late
surface rod and it remains negative if the external medium
say, quartz, brass, copper, or iron. However, the sign chan
if c05c02 and the external medium is aluminum. Therefo
one can anticipate, in particular, that for a rod embedded
aluminum an initial pulse with velocity close toc02 may
transform only into a tensile soliton while an initial puls
with velocity close toc01 evolves to become a compressio
soliton.

Finally, let us consider the influence on the sign ofc1 @Eq.
~44!#. For case I,b1150, hence the sign is defined by th
sign of the quantity (b10b21b3)/b4. For polystyrene it is,
generally, negative for all of the external media in Table
while for a free lateral surface it is positive. Thus, the velo
ity c of a nonlinearwave in a rod embedded in an extern
medium is lower than thelinear wave velocityc0 while for a
free surface rod nonlinear waves propagate faster than li
waves. On the other hand, the nonlinear wave velocity,c, in
el

I,III
, II

I, III
TABLE II. Phase velocities of waves in a lead rod embedded in different external media.

Material ct31023 m/sec clDe31023 m/sec c0131023 m/sec c0231023 m/sec c0331023 m/sec Mod

Quartz 3.78 6.02 2.06 2.55 or 4.39 7.51 I,I
Iron 3.23 5.85 2.2 2.47 or 4.91 2.73 or 4.81 I
Copper 2.26 4.7 2.11 I
Brass 2.12 4.43 2.08 I
Aluminium 3.08 6.26 2.03 I
Polystyrene 1.01 2.1 1.83 0.38 or 1.81 1.84 or 2.06 I
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a polystyrene rod embedded in external medium is hig
than the linear wave velocity for a rod with free lateral su
face,c* 5AE/r0.

VI. NUMERICAL SIMULATION OF UNSTEADY STRAIN
WAVE PROPAGATION

Recent numerical simulation of unsteady nonlinear wa
processes in elastic rods withfree lateral surfaceshows that
for A,0 only initial compression pulses provide a solita
wave ~41! or a wave train~see Fig. 3 in@19#!, while tensile
initial pulses do not become localized and are destroyed
dispersion. On the contrary, forA.0 only tensile strain soli-
tary waves may appear, and initial compression pulses
destroyed.

Let us consider now the case when the rod lateral sur
is partly free along the axis and the other part is subjecte
a sliding contact with an external elastic medium, as it
shown in Fig. 1. Then the nonlinear strain wave propaga
is described in each part by its own equation~39!. Matching
is provided by the continuity of strains and its derivative
Assume that for the free surface part (k150, k250) A
5A1, m5m1, while for the embedded one,A5A2, m5m2.
Let the initial solitary wave~41! move from left to right~Fig.
1! far from the embedded part, which is supposed to be
deformed at the initial time. It was found in@11# that the
massM conservation in the form

d

dt
M50, M5E

2`

`

vdx ~48!

is satisfied by equation~39!. Then using Eq.~41! and~42! we
get for the massM1,

M152A1m1 , ~49!

The wave evolution along the embedded part, depend
the ratio betweenA1 and A2. Similar to the unsteady pro
cesses inside a rod with the free lateral surface@19#, an initial
strain solitary wave will be destroyed in the embedded p
if sgn A2 differs from sgnA1. Otherwise another solitary

FIG. 1. Rod partly embedded in an external elastic medium w
sliding.
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wave or a wave train will appear. When the initial pulse
not massive enough it was found in@19#, that only one new
solitary wave appears but there is an oscillatory decay
tail. However, the contribution of the tail to the massM is
negligibly small relative to the solitary wave contributio
hence

M252A2m2 . ~50!

ComparingM1 andM2, according to Eq.~48! it follows that

A1m15A2m2 . ~51!

Therefore, ifA2,A1 the amplitude of the solitary wave
increases while its width, proportional tom21, decreases
hence there is focusing of the solitary wave. On the contra
whenA2.A1 attenuation of the solitary wave is provided b
the simultaneous decrease of the amplitude and the incr
of the wave width.

Numerical simulations confirm our theoretical estimat
In Fig. 2 the evolution of a strain tensile solitary wave
shown in a rod, having a central part embedded in an ex
nal medium. The value ofA in the central part II,A2, is
positive but smaller than the value ofA1 in the surrounding

h

FIG. 2. Focusing and reconstruction of a strain solitary wave
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free lateral surface parts I and III,A1.A2.0. In the embed-
ded part II @Fig. 2~b!# the solitary wave amplitude exceed
the amplitude of the initial solitary wave in Fig. 2~a!, while
its width becomes narrower than that of the initial wav
Therefore an increase in amplitude of the elastic strain s
tary wave is possible even in anuniformly elastic rod. This
may overtake the yield point inside the elastically deform
rod, hence the possible appearance of cracks or plast
zones. In our case the deformations of the wave front
rear are equal. At variance with the strain soliton focusing
a rod with diminishing cross section@22# both theory and
experiments show steepness of the wave front together
widening of its rear. Moreover, aplateaudevelops in the tail
of the solitary wave. These differences could be caused
the absence of mass~and energy! conservation for strain soli
tary waves in a rod with diminishing cross section.

In the case treated in this paper, the solitary wave does
lose massM , hence its original shape is recovered wh
traversing part III in Fig. 2~c,d!. One can see that an oscilla
tory tail of the solitary wave in Fig. 2~d! is less pronounced
than the tail in Fig. 2~c!, in agreement with Eq.~51!.

When A2.A1.0, an initial tensile strain solitary wave
Fig. 3~a!, is drastically attenuated as soon as it enters
embedded area, Fig. 3~b!, and its amplitude decreases whi

FIG. 3. Attenuation and reconstruction of a strain solitary wav
.
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its width becomes larger. Again both the reconstruction
the initial wave profile and the damping of its tail are o
served in the third part of a rod with free lateral surface, p
III in Fig. 3~c,d!.

Consider now the case of different signs ofAi and assume
that A1.0 on both free surface parts. One can see in Fig
how an initial tensile solitary wave, Fig. 4~a!, is destroyed in
the embedded part II, Fig. 4~b!, in agreement with our pre
vious results on the unsteady processes occurring for a
surface rod. However, a strain wave is localized again in
third part of a rod with free lateral surface, Fig. 4~c!, part III,
and finally recovers its initial shape in Fig. 4~d!. Again
damping of the tail behind the solitary wave is observe
Accordingly, both compression and tensile initial pulses m
produce localized strain solitary waves in a rod partly e
bedded in an external elastic medium with sliding.

Moreover, the amplitude of the solitary wave generated
such a manner may be greater than the magnitude of
initial pulse. This case is shown in Figs. 5, 6 whereA1
,0, A2.0, and uA1u,A2. One can see in Fig. 5 how a
initially localized rectangular tensile pulse, Fig. 5~a!, is de-
stroyed in the free surface part I, Fig. 5~b!. However, a wave
train of solitons appears, when a destroyed strain w
comes to the embedded part, Figs. 5~c,d!. The amplitude of
the first soliton in Fig. 5~d! exceeds the magnitude of th

FIG. 4. Delocalization and reconstruction of a strain solita
wave.
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initial rectangular pulse in Fig. 5~a!. In the absence of sur
rounding external medium this rod waveguide does not s
port tensile solitary wave propagation, and a strain wav
delocalized as shown in Fig. 6.

VII. POSSIBLE APPLICATIONS OF THE THEORY

A. Surface-tension-like effects

The theory developed may be applied to the study
surface-tension-like effects in solids, when there are imp
fections on the rod surface, see, e.g.,@14#. Recently, it was
experimentally found@15# that the stresses due to surfa
effects, may be rather large. Theory@14# shows that surface
stresses, acting on the lateral surface of an elastic body,
be modelled by using normal stresses in the form

s rr 5ae f fwxx , ~52!

with ae f f being a surface-tension-like coefficient. In this ca
the boundary conditions~26!, ~27! are valid withk150, k2

FIG. 5. Generation of a tensile strain solitary wave train in
rod. The elastic properties of the rod are chosen such that te
wave propagation cannot occur in the absence of contact with
external medium.
p-
is

f
r-

ay

e

5ae f f . Thus our theory may beformally extended to ac-
count for the influence of surface-tension-like effects on
propagation of strain solitary waves. This ‘‘surface tensio
does not alter the phase velocityc though it may affect the
sign of the wave amplitude. Although the problem of obta
ing meaningful values of the ‘‘surface tension’’ coefficient
solids is far from being solved, the data given in@15# for
some materials seem to be reliable. The theory develo
here may be used for the determination of the surfa
tension-like coefficient. Indeed, the expression (b10b2
1b3)/b4 containsae f f , hence, by measuring solitary wav
parameters in a rod with different surface roughness, one
obtain the corresponding values ofae f f . Accordingly, an
estimation of the influence of the surface tension on the s
tary wave parameters is useful for applying the theory
nondestructive testing, because a bulk strain solitary w
~41! keeps its shape, independently of the lateral surf
roughness, while the wave parameters~amplitude, velocity,
etc.! contain information about it.

B. Murnaghan’s moduli

The isotropic third-order Murnaghan’s moduli (l ,m,n)
are not known for many materials. The third-order crystalli

ile
an

FIG. 6. Delocalization of a strain solitary wave in the absence
external medium.
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moduli have been measured for many materials@4#, @23#, and
it was proposed in@24# to use them to obtain the isotrop
moduli. For cubic crystals the relationships are

c11252l , c1665m, c4565n/4, c1235n22m12l ,

c1445m2n/2, c11154m12l , ~53!

whereci jk denotes the corresponding third-order crystall
elastic modulus for cubic crystals. However, independ
measurements of isotropic moduli for some materials do
satisfy these analytical relationships. For instance, for alu
num and molybdenum, for which both the Murnagh
moduli and the crystalline cubic moduli@23# are known, we
can estimate the discrepancy. Using Eqs.~53! we calculate
the deviations, see Table III,

d15Uc11222l

c112
U; d25Uc1662m

c166
U; d35Uc45620.25n

c456
U;

TABLE III. Deviations in percentfrom Eq. ~53!.

Material d1 d2 d3 d4 d5 d6

Aluminium 60 15 111 92 208 50
Molybdenum 27 52 115 305 604 39
he
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d45Uc1232n12m22l

c123
U; d55Uc1442m10.5n

c144
U;

d65Uc11124m22l

c111
U.

Indeed, there is interest in the direct measurement of
Murnaghan moduli. Our theory gives one possible way. W
see from Eq.~40! that

b45q01q1l 1q2m1q3n ~54!

is a linear combination of Murnaghan’s moduli, with

q05
H

2r0@2~l1m!2k1
2#4

,

where

H548m~l1m!3~3l12m!13k1
4~l12m!23k1

3~l14m!

3~5l14m!112k1
2~3l12m!~l216lm16m2!

26k1~l1m!~3l12m!~l2116lm116m2!;

and
q15
~2m2k1!@k1

21k1~l24m!14m~l1m!#

r0@2~l1m!2k1
2#4

;

q25
2~k123l22m!@k1

32k1
2~5l16m!1k1~3l2120lm112m2!24m~3l215lm12m2!#

r0@2~l1m!2k1
2#4

;

q35
6l2~l1m2k1!

r0@2~l1m!2k1
2#3

.

lus,

d
up-

-

The coefficientsq02q4, b4 are functions of usually
known Lamécoefficients and densities of the rod and t
external medium. The coefficientb4 additionally depends
upon the wave amplitude~41!,~42!. Hence, Eq.~54! may be
considered as a linear inhomogeneous algebraic equatio
the Murnaghan moduli (l ,m,n). Taking three different exter
nal media we may have three equations and obtain the va
of l ,m,n. The necessary and sufficient condition for a no
trivial solution is the nonzero value of the determinant of t
system. Calculations for several elastic materials show th
usually does not vanish.

As the width or wavelength of a solitary wave does n
have a precise definition it is better to search for perio
wave trains. Equation~39!, indeed, admits such a solution
the form of a cnoidal wave

v5Ak2F12
E

K
2k21k2cn2~kuuk!G ~55!

whereK(k),E(k) and k are the complete elliptic integral
for

es
-

it

t
c

of the first and second kinds and Jacobi functions modu
respectively,A is defined by Eq.~42!. For the wave number
k we have

k5
2K~k!

Lcn
, ~56!

whereLcn is the length of the cnoidal wave, which is define
as a distance between neighboring maxima or minima. S
pose, for example,A.0. Then

vmax5Ak2F12
E

K G , vmin5Ak2F12
E

K
2kG . ~57!

Using Eq.~57! the value of the Jacobi modulusk @and, there-
fore bothK(k) andE(k)# may be obtained from the equa
tion

F12
E

KG~vmax2vmin!2k2vmax50,
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wherevmax, vmin may be measured as for the solitary wa
amplitude in@8,9#. Next, the wave number may be obtain
from Eq. ~56! using the measured wavelengthLcn . Finally
eithervmax or vmin may be used for the procedure describ
for the solitary wave case. For negativeA we have to ex-
changevmax, vmin in Eq. ~57!. The influence of dissipation
on the propagation of nonlinear elastic waves in a rod
been estimated in@8#. It was found that it cannot be impor
tant, and cause negligible wavelength variation. Moreov
weak dissipation may be described analytically as with
influence of slow variable cross-sections of the rod@22#.
Therefore, with a cnoidal wave there seems to be no prob
in determining with high accuracy all wave characteristi
Unfortunately, to our knowledge no experimental data
available concerning the generation of such a wave even
rod with free lateral surface. Thus we leave this matter a
challenge for experimentalists.

VIII. CONCLUSIONS

A theory has been developed for the description of n
linear longitudinal strain waves in an elastic rod embedde
another external elastic medium with sliding contact. Fi
relationships were obtained for the normal stresses actin
the rod lateral surface. Then, in the long wave limit we d
rived the nonlinear evolution equation for strain waves alo
the rod, and an exact solitary wave solution has been
tained. The analysis of the solution allowed us to conclu
that the influence of the external medium defines an inte
of phase velocities in which a solitary wave can propaga

In contrast tosurfacewave propagation in Cartesian co
ordinates for waveguides, where only one wave velocity
possible, here we have two or even three intervals of ‘
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lowed’’ velocities. Moreover, depending on the elasticity
the surrounding external medium the longitudinal stra
wave in a rod may be a tensile or a compression wave.

We have also numerically followed the evolution of th
nonlinear wave in a rod partly embedded in an elastic ex
nal medium. Focusing, attenuation, or delocalization o
strain solitary wave is observed in such a case dependin
the elastic properties of the external medium. Moreover
each of these cases there is reappearance of the original
tary wave when reemerging from the embedded area. A
result of wave focusing exceeding the yield point of the el
tic rod material may occur, as well as the possibility of l
calization of both compression or tensile pulses. All of the
properties could be useful when designing elastic structu
or establishing criteria to assess their durability and fract
mechanics.

A generalization of the theory has been proposed to
mally account for surface-tension-like effects on the evo
tion of long nonlinear strain waves. This extension of t
theory may also be of interest for using nonlinear waves
probes in nondestructive testing. Finally, we have sho
how the theory has potential for a direct determination of
Murnaghan third-order isotropic elastic moduli of the ma
rial by measuring the parameters of the wave propaga
along the rod.
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